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Announcement for Next Week Lecture / Lab

 Lecture for next week (May 29) will be provided as a
recorded lecture video that will be uploaded to the
LMS, because It Is a substitute holiday.

* No 'time for assignment’ in the lab on May 29.

— Email your assignment source code and captured video to TA
by Friday of that week (Jun 2).

— The assignment pdf is expected to be uploaded on May 29.

 |If you have any questions about the lecture or lab,
please post them on the LMS Q&A board.

Hanyang University CSE4020, Yoonsang Lee



Outline

 Intro: Motivation and Curve Representation

* Polynomial Curve
— Polynomial Interpolation
— More Discussion on Polynomials

« Hermite Curve
 Bezier Curve

 Brief Intro to Spline

Hanyang University CSE4020, Yoonsang Lee



Intro: Motivation and Curve
Representation



Motivation: Why Do We Need Curve?

* Smoothness
— no discontinuity

* In many CG applications, we need smooth shape
and smooth movement.
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Curve Representations

* Non-parametric

— Explicit 1 y = f(x)
e eX)y=Xx2+2Xx-2
 Pros) Easy to generate points
« Cons) Cannot express vertical lines!

— Implicit : f(x,y) =0
c eX)X°+y:-22=0

* Pros) Easy to test if a point is inside or
outside

« Cons) Inconvenient to generate points
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Curve Representations

« Parametric : (X, y) = (f(t), g(t)) g
— ex) (X, y) = (2 cos(t), 2 sin(t))

"
L — 2

— Each point on a curve is expressed as a
function of additional parameter t

— Pros) Easy to generate points

— The parameter t acts as a “local
coordinate” for points on the curve

« For computer graphics, the parametric
representation is the most suitable.
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Polynomial Curve



Polynomial Curve

« Polynomials are usually used to describe curves in
computer graphics.
— Simple
— Efficient
— Easy to manipulate

« A polynomial of degree n:
x(t)=at"+a t""+---+at+a,

Hanyang University CSE4020, Yoonsang Lee



Polynomial Interpolation

* One way to make a smooth curve using
polynomials is polynomial interpolation.

« Polynomial interpolation determines a specific
smooth polynomial curve passing though given
data points.

Hanyang University CSE4020, Yoonsang Lee



Polynomial Interpolation

 Linear interpolation with a polynomial of degree one

— Input: two nodes
— Output: Linear polynomial
(7. x,)

O
(foio)()/

X(t)=at+a,

How to find a, and a,?
— al, +a, =X,

(312‘1 +a0 = X,

I HEN

We can compute the value of a; &
a, because we have 2 equations
(=2 data points) for 2 unknowns!

* These slides are based on the slides of Prof. Jehee Lee (SNU): If tO:O and t1 :1/ then dp=Xp and d1=X1-Xp

tml

http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.h  _ X(t) — (X1-X0)t + XO — (’I -t)XO + tX1



Polynomial Interpolation

« Quadratic interpolation with a polynomial of degree two

(we need 3 points to get the
(t,, %) value of 3 unknowns)

at: +at, +a, = X,

(t,, %,) at’+at +a, =X,
(t, %) a2t22 +at, +a, =X,

1t ) a) (%)
. 2 0 0 0 0
X(t)=at"+at+a, 1t ) a |=|x

1t e (%,




Polynomial Interpolation

« Polynomial interpolation of degree n
(t, %)
1 07 ) a) (%)

(t,, X,) ° °
(t5, %) \3\/ Lo tln_l L& R

n-1 n
X()=at"+--+at+a, & v b A& X

* How to find the value of unknowns a,,, ..., a,?

« Several methods:
— Solving linear system, Lagrange’s, Newton’s method, ...



Problem of Higher-Degree Polynomial
Interpolation

 Oscillations at the ends — Runge’s Phenomenon

® Nodes

2.0 A Interpolant

ceee fix)=(1+25x7)71
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 Using higher-degree polynomial interpolation for curves is
a bad idea.
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[Demo] Polynomial Interpolation

IIIII polation Polynomial

https://www.benjoffe.com/code/demos/interpolate

 Drag points and observe changes of the curve.

* Increase polynomial degree and drag points.
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https://www.benjoffe.com/code/demos/interpolate

Cubic Polynomials

_ 3 2
» Cubic (degree of 3) polynomials X(t)=a,l" +bt"+ct+d,

are commonly used in computer  Y(t) =a,t’ +bt* +c t+d,
graphics because... z()=a,t’ +bt* +ct+d,
or

* The lowest-degree polynomials o(t) = at® + bt® +ct +d

representing a 3D curve.

 Can avoid unwanted wiggles of /

higher-degree polynomials SN /

(Runge’s Phenomenon) / —

Hanyang University CSE4020, Yoonsang Lee



Complex Curve from Cubic Polynomials?

How to make ?

using

* Answer — Spline: piecewise polynomial

At this moment, let’s just focus on a single piece of
polynomial.
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Defining a Single Piece of Cubic Polynomial

p(t) =at® +bt* +ct+d

» Goal: Defining a specific curve (finding a, b, ¢, d) as we want
(using data points or conditions given by you)

« 4 unknowns, so we need 4 equations (conditions or
constraints). For example,

— 4 data points

— position and derivative of two end points p | G

Po /’u() ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
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Formulation of a Single Piece of Polynomial

* A polynomial can be formulated in two ways:

* With coefficients and variable:
p(t) =at’ +bt* +ct+d
— coefficients: a, b, ¢, d

— variable: t

« With basis functions and points:

P(t) = bo(t)po + b1(t)p1 + b2(t)P2 + b3(t)P3

— basis functions: by(t), b,(t), b,(t), bs(t)
— points: py, Py, P2, P3
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Trivial Example: Linear Polynomial

t1, (x1,¥1)

tO,(xo/;yO)././

xX(t) = ajt + agy
y(t) = agyt + agy

Hanyang University CSE4020, Yoonsang Lee



Trivial Example: Linear Polynomial

e Formulation with coefficients and variable:
x(t) = (1 — xo)t + x0
y(t) = (Y1 — yo)t + yo
P(t) = (P1 — Po)t + Po

e Matrix formulation

L 0] |p1

p(f)= [.):(f) y(f)] basis r/rlatrix E:D} [ ]

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner e 2




Trivial Example: Linear Polynomial

e Formulation with basis functions and points:

— regroup expression by p rather than t

p(t) = (P1 — Po)t + Po

= (1 —t)po + tp1
\/

basis functions
— interpretation in matrix viewpoint

o) = (1t 17{ " of) B

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 2
2



Meaning of Basis Functions

p(t) = (1 —t)po +tp1

 Contribution of each point as t changes

1

09F

08k )=t
by(t)=1-t it)

02k

01k

0

A A L I} i i A A
0 0 02 03 04 05 06 07 08 0%

Hanyang University CSE4(



Quiz 1

* Go to https://www.slido.com/
 Join #cg-ys
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2021123456: 4.0

 Note that your quiz answer must be submitted in the
above format to receive a quiz score!

Hanyang University CSE4020, Yoonsang Lee
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Hermite Curve



Hermite Curve

« A Hermite curve Is a cubic polynomial
defined in Hermite form.

* In splines, we want curve pieces that

connect smoothly. ‘I
* |In Hermite spline, you can do this by f

specifying
— position of the endpoints
— 1st derivatives at the endpoints

Hanyang University CSE4020, Yoonsang Lee



Charles Hermite
(1822-1901)

Hermite Curve

* A cubic polynomial.

 Constraints: endpoints and their tangents
(derivatives)

Hanyang University CSE4020, Yoonsang Lee



Hermite curve

e Solve constraints to find coefficients

z(t) = at® +bt* +ct +d
7' (t) = 3at® + 2bt + ¢
z(0) =z9=d
z(l)=x1=a+b+c+d
' (0) =x5=c
7' (1)=2] =3a+2b+c
0 0 1 X,
1 1 1 1§p X,
0 01 Ofic| I/,
3 21 ofla] |,
Cornell CS4620 Fall 2008 o Lecture 18 g |
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Hermite curve

e Solve constraints

to find coefficients
z(t) = at® +bt* +ct +d

7' (t) = 3at® + 2bt + ¢
z(0) =z9=d
z(l)=x1=a+b+c+d
' (0) =x5=c

7' (1)=2] =3a+2b+c

Cornell CS4620 Fall 2008 o Lecture 18

|._l|._l|._|.c:>

dZZCO
/
C:xo
/ /
a = 2x9 — 221 + Ty + 2

b= —3xo + 3w1 — 225 — T}

2 =2 1 1"
33 -2 -1}~
0 0 1 0 fx,
1 0 0 of
|
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Hermite curve

e Matrix form is much simpler

(2 -2 1 1] [po
—3 3 -2 -1 P1
H=1I[ t? t 1
p(t) = | o o0 1 ol |w
i 1 0 0 0 | _V1_
— coefficients = rows \
— basis functions = columns Xo Yo
Hermite basis matrix 1N
Y'a y ,D
X ) 1 g

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner o 3
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Coefficients = rows

p(t) =at’ +bt* +ct+d

ettt 1]

X X X X

X X X X

X X X X

X X X X

Po
P1
P2
P3

P(t) = bo(t)po + b1(t)p1 + b2(t)p2 + b3(t)P3

Cornell CS4620 Fall 2008 o Lecture 18

© 2008 Steve Marschner ¢ 3
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Basis functions = columns

p(t) =at’ +bt* +ct+d

2t 1]

X X X X

X X X X

X X X X

X X X X

Po
P1
P2
P3

P(t) = bo(t)po + b1(t)p1 + b2(t)p2 + b3(t)P3

Cornell CS4620 Fall 2008 o Lecture 18

© 2008 Steve Marschner ¢ 3
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Hermite curve

e Hermite basis functions

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner o 3
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[Demo] Hermite Curve

https://codepen.io/liorda/pen/KrvBwr

« Change the position of end points and their
derivatives by dragging

Hanyang University CSE4020, Yoonsang Lee


https://codepen.io/liorda/pen/KrvBwr

Quiz 2

* Go to https://www.slido.com/
 Join #cg-ys
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2021123456: 4.0

 Note that your quiz answer must be submitted in the
above format to receive a quiz score!

Hanyang University CSE4020, Yoonsang Lee


https://www.slido.com/

Bezier Curve



Bezier Curve

« A Bezier curve iIs a polynomial defined
In Bezier form.

— We'll see a cubic Bezier curve example in
the following slides.

— But note that Bezier curves are not limited
to using a third-degree polynomial.

» In Bezier spline, you can connect curve ©
pieces smoothly by carefully specifying |
control points.

Hanyang University CSE4020, Yoonsang Lee



Recall: Hermite curve

e Constraints: endpoints and tangents (derivatives)

4

Yok
0/

l)( )

Cornell CS4620 Fall 2008 o Lecture 18

2 =2 1
-3 3 =2
0 0 1

1 0 0

L | |po
—1| |p1
0 Vo
0 Vi

©_2008_Steve_Marschner °3
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Hermite to Bézier

e Mixture of points and vectors is awkward
e Specify tangents as differences of points

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner o 3
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Hermite to Bézier

e Mixture of points and vectors is awkward
e Specify tangents as differences of points

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 4
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Hermite to Bézier

e Mixture of points and vectors is awkward
e Specify tangents as differences of points

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 4
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Pierre Bézier (1910-1999)
== widely published
research on this curve
while working at Renault

Hermite to Bézier

e Mixture of points and vectors is awkward
e Specify tangents as differences of points

Qo 91 d2r Q3
. control points

— note derivative is defined as 3 times offset t

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 4
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Hermite to Bézier
q,

Po = 4o
P1 = Q3
vo = 3(d1 — qo)
vi = 3(q3 — q2)

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 4
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Hermite to Bézier
q,

Po = 4o
P1 = Q3
vo = 3(d1 — qo)
vi = 3(q3 — q2)

Po | 1 0 0 0] [qo]
pif |0 O O 1} g1
vol [-3 3 0 0] |qg

V1 0 0 —3 3| |as,

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 4
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a 2 =2 1
bl |-3 3 -2
c|l [0 O 1
d| |1 0 o0

Hermite basis matrix

Cornell CS4620 Fall 2008 o Lecture 18

o W o o

- O O

Hermite to Bézier
q,

control points

X

O] [do
1 q1
0 g2
3| [4qs

© 2008 Steve Marschner ¢ 4
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a —1 3 -3 1 q0
bl |3 -6 3 0| |a1| Hermite to Bézier
C -3 3 0 Of [qg2 q, q
d| |1 0 0 0] |as 2
Po = 9o
P1 = g3
vo = 3(q1 — qo)
vi = 3(qs — q2)
a | 2 -2 1 111 o o0 o] [qol
bl -3 3 —2 —1/|0 0 0 1| |a;
cl | O 0 1 0 -3 3 0 0 qo
_d_ _1 0 0 O_ _O 0 —3 3_ 3

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 4
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Bézier matrix
Bezier basis matrix L |
use notation ‘p’ instead of ‘q

. |

—1 3 -3 1] [po
3 —6 3 0| |p:

— [+3 2
pi)y=1[t" ¢ t 1|5 o 4 by
_1 0 0 0_ | P3

— note that these are the Bernstein polynomials
n\ . ,
boat) = (1)1 =07

and that defines Bézier curves for any degree
(n: degrees of polynomial, k: index of basis function)

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 4
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Bezier Curve

 Bernstein basis functions
B, (t) = 1—t)°
B (t) =3t(1-t)’

) n N—i 4
B, (t)_(ij(l_t) t B, (t) =3t*(L-t)
B; (t) =t°

* Cubic Bezier curve: Cubic polynomial in
Bernstein bases

p(t) = By ()P, + B (t)p, + B; (t)p, + B; (t)p,
= (1-1)°p, +3t(1-t)*p, + 3t*(1-t)p, +t°p,



Bézier basis

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 4
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Paul de Casteljau (1930-)
first developed the ‘Bezier’
curve using this algorithm
in 1959 while working at
Citroén, but was not able

de Casteljau’s Algorithm

to publish them due to
company policy

« Another method to compute Bezier curve

Hanyang University CSE4020, Yoonsang Lee



DE. CASTELJAU ALGORITHM

® We start with our original set of
points Po

@ Inthe case of a cubic Bezier curve,
we start with four points

P2

CIS 636/736: (Introduction to)} Computer Lecdure 27 of 42

COMPUTING & [MFORMATION SCIEMNCES
F.AMEAS STATE UNIVERSITY



gﬁ DE CASTELJAU ALGORITHM
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DE CASTELJAU ALGORITHM
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DE CASTELJAU ALGORITHM
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de Casteljau’s Algorithm

Ke

aN

T = (1-)*P + t*Q

P = (1-t)*A + t'B Q= (1-1)*B + t*C
T = (1-)(1-)*A + (1-)t*B + t(1-t)*B + t*t*C

A= (1-4)*K + t°L B=(1-*L+t'M  C=(1-)*M + t*N
T = (1-4)3*K+(1-)2°L + 2(1-t2PL+2(1-)2*M + (1-t)2*M+t>*N

https://people.eecs.berkeley.edu/~sequin/CS284/LECT06/L3.htm

Hanyang University CSE4020, Yoonsang Lee


https://people.eecs.berkeley.edu/~sequin/CS284/LECT06/L3.htm

de Casteljau’s Algorithm

 Nice recursive algorithm to compute a point on a Bezier curve

« Additionally, it subdivide a Bezier curve into two segments

* You can draw a curve with a sufficient number of subdivided
control points
— "Subdivision" method for displaying curves

Hanyang University CSE4020, Yoonsang Lee


http://de.wikipedia.org/wiki/Bild:De_Casteljau_construction_2.png
http://de.wikipedia.org/wiki/Bild:De_Casteljau_construction_3.png

[Demo] de Casteljau’s Algorithm

t=0.420

http://www.malinc.se/m/DeCasteljauAndBezier.php

* Move red points
* Also check the subdivision demo

Hanyang University CSE4020, Yoonsang Lee


http://www.malinc.se/m/DeCasteljauAndBezier.php

Displaying Curves

« To display a curve, compute a set of points on a curve and
connecting the points with line segments.

 Brute-force
— Evaluate p(t) for incrementally spaced values of t

* Finite difference
— The same idea, but much more efficient

— See http://www.drdobbs.com/forward-difference-calculation-of-
bezier/184403417

 Subdivision
— Use de Casteljau’s algorithm

Hanyang University CSE4020, Yoonsang Lee


http://www.drdobbs.com/forward-difference-calculation-of-bezier/184403417
http://www.drdobbs.com/forward-difference-calculation-of-bezier/184403417

Properties of Bezier Curve

* Intuitively controlled by control points

* The curve is contained in the convex hull of control
points.

P2
[ ]

oP>
"\ﬂ" " Convex hull: Minimal-sized convex
polygon containing all points
o P

p° (b)

(@

* End point interpolation.

Hanyang University CSE4020, Yoonsang Lee



Quiz 3

* Go to https://www.slido.com/
 Join #cg-ys
* Click "Polls"

« Submit your answer in the following format:

— Student ID: Your answer
— e.g. 2021123456: 4.0

 Note that your quiz answer must be submitted in the
above format to receive a quiz score!

Hanyang University CSE4020, Yoonsang Lee


https://www.slido.com/

Brief Intro to Spline



Spline

* Spline: piecewise polynomial

\/ Y

* Three Issues:
— How to connect these pieces continuously?
— How easy is it to "control" the shape of a spline?
— Does a spline have to pass through specific points?

Hanyang University CSE4020, Yoonsang Lee



Continuity

* Let’s try another Bezier demo: Bezier spline

@ Cubic Bezier Curves Demo

http://math.hws.edu/graphicsbo
ok/demos/c2/cubic-bezierhtml

[JLock Control Point Pairs [IHide Controls

* How to “smooth” the spline?

Hanyang University CSE4020, Yoonsang Lee


http://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html
http://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html

Continuity

e Smoothness can be described by degree of continuity
— zero-order (C): position matches from both sides

— first-order (C1): position and 15t derivative (velocity) match from
both sides

— second-order (C2): position and 15t & 2" derivatives (velocity &
acceleration) match from both sides

zero order first order second order

Cornell CS4620 Fal. ccee  cccvune oo © cuve wiere i sChner o g
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Control

* Let’s say you want to make a specific shape using
these two curves. Which one is more controllable?

@ Cubic Bezier Curves Deme  nter polation Polynomial
Click rag th t in

[JLock Control Point Pairs [THide Controls

http://math.hws.edu/graphicsbo https://www.benjoffe.com/co
ok/demos/c2/cubic-bezier.html de/demos/interpolate

Hanyang University CSE4020, Yoonsang Lee


http://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html
http://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html
https://www.benjoffe.com/code/demos/interpolate
https://www.benjoffe.com/code/demos/interpolate

Control

e |Local control
— changing control point only affects a limited part of spline
— without this, splines are very difficult to use
— many likely formulations lack this
e natural spline
e polynomial fits

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner o g
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Interpolation / Approximation

* Interpolation: passes through points

O\

« Approximation: guided by points

[ ]
. &
&

* Interpolation properties are preferable, but not mandatory.

Hanyang University CSE4020, Yoonsang Lee



Bezier Spline

Continuity: can be C° or C!

Local controllability

— C2?is possible with the loss of local controllability.
Rarely used.

Interpolation: only pass through two end points

Bezier spline is very widely used:
— To draw shapes in graphic tools such as Adobe
[llustrator

— To define animation paths in 3D authoring tools such
as Blender and Maya

— TrueType fonts use quadratic Bezier spline,
PostScript fonts use cubic Bezier spline

Hanyang University CSE4020, Yoonsang Lee ; ) o
True Type Font Postscript Font



Catmull-Rom Spline

 One Hermite curve between two consecutive
control points.

 Define end point derivatives using adjacent control

points.
| . pi+1_pi—1
‘/(t; P.) p'(t) = ;
(t,Po) ‘_/(‘ts’p3)
(t;,P,)

« Cl! continuity, local controllability, interpolation

Hanyang University CSE4020, Yoonsang Lee



Natural Cubic Splines

« We want to achieve higher continuity (at least C?)
* 4n unknowns

— n Bezier curve segments (4 control points per each segment)
* 4n equations

— 2n equations for end point interpolation

— (n-1) equations for tangential continuity

— (n-1) equations for second derivative continuity

— 2 equations: X"(t,)=x"(t,)=0

(t1 : X1) (ts » X3 )
. (tn—1 J Xn—1)

(tO’ XO)
(t2’ X2) (tn’ Xn)

« C? continuity, no local controllability, interpolation



B-splines (brief intro)

e Use 4 points, but approximate only middle two

P P,

e Draw curve with overlapping segments
— 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc

l) ® pw

P, * 1)5

e C? continuity, local controllability, approximation

Cornell CS4620 Fall 2008 e Lecture 18 © 2008 Steve Marschner ¢ 7
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L_ab Session

 Now let's start the lab session.

Hanyang University CSE4020, Yoonsang Lee
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