Computer Graphics

11-Curves

Yoonsang Lee
Hanyang University

Spring 2023

Announcement for Next Week Lecture / Lab

- Lecture for next week (May 29) will be provided as a recorded lecture video that will be uploaded to the LMS, because it is a substitute holiday.
- No 'time for assignment' in the lab on May 29.
- Email your assignment source code and captured video to TA by Friday of that week (Jun 2).
- The assignment pdf is expected to be uploaded on May 29.
- If you have any questions about the lecture or lab, please post them on the LMS Q\&A board.

Outline

- Intro: Motivation and Curve Representation
- Polynomial Curve
- Polynomial Interpolation
- More Discussion on Polynomials
- Hermite Curve
- Bezier Curve
- Brief Intro to Spline

Intro: Motivation and Curve Representation

Motivation: Why Do We Need Curve?

- Smoothness
- no discontinuity
- In many CG applications, we need smooth shape and smooth movement.

Hanyang University CSE4020, Yoonsang Lee

Curve Representations

- Non-parametric
- Explicit : y = f(x)
- ex) $y=x^{2}+2 x-2$
- Pros) Easy to generate points
- Cons) Cannot express vertical lines!
- Implicit : $\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{0}$
- ex) $x^{2}+y^{2}-2^{2}=0$
- Pros) Easy to test if a point is inside or outside
- Cons) Inconvenient to generate points

Curve Representations

- Parametric: $(\mathbf{x}, \mathbf{y})=(\mathbf{f}(\mathrm{t}), \mathbf{g}(\mathrm{t}))$
$-\mathrm{ex})(\mathrm{x}, \mathrm{y})=(2 \cos (\mathrm{t}), 2 \sin (\mathrm{t}))$
- Each point on a curve is expressed as a function of additional parameter \mathbf{t}
- Pros) Easy to generate points
- The parameter \mathbf{t} acts as a "local coordinate" for points on the curve
- For computer graphics, the parametric representation is the most suitable.

Polynomial Curve

Polynomial Curve

- Polynomials are usually used to describe curves in computer graphics.
- Simple
- Efficient
- Easy to manipulate
- A polynomial of degree n :

$$
x(t)=a_{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

Polynomial Interpolation

- One way to make a smooth curve using polynomials is polynomial interpolation.
- Polynomial interpolation determines a specific smooth polynomial curve passing though given data points.

Polynomial Interpolation

- Linear interpolation with a polynomial of degree one
- Input: two nodes
- Output: Linear polynomial

How to find a_{0} and a_{1} ?

$$
\begin{aligned}
& \rightarrow \quad a_{1} t_{0}+a_{0}=x_{0} \\
& a_{1} t_{1}+a_{0}=x_{1}
\end{aligned}
$$

$$
\left(\begin{array}{ll}
1 & t_{0} \\
1 & t_{1}
\end{array}\right)\binom{a_{0}}{a_{1}}=\binom{x_{0}}{x_{1}}
$$

We can compute the value of a_{0} \& a_{1} because we have 2 equations ($=2$ data points) for 2 unknowns!

* These slides are based on the slides of Prof. Jehee Lee (SNU): http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.h

If $t_{0}=0$ and $t_{1}=1$, then $a_{0}=x_{0}$ and $a_{1}=x_{1}-x_{0}$ $\rightarrow x(t)=\left(x_{1}-x_{0}\right) t+x_{0}=(1-t) x_{0}+t x_{1}$

Polynomial Interpolation

- Quadratic interpolation with a polynomial of degree two (we need 3 points to get the
 value of 3 unknowns)

$$
\begin{aligned}
& a_{2} t_{0}^{2}+a_{1} t_{0}+a_{0}=x_{0} \\
& a_{2} t_{1}^{2}+a_{1} t_{1}+a_{0}=x_{1} \\
& a_{2} t_{2}^{2}+a_{1} t_{2}+a_{0}=x_{2}
\end{aligned}
$$

$$
x(t)=a_{2} t^{2}+a_{1} t+a_{0}
$$

Polynomial Interpolation

- Polynomial interpolation of degree n

- How to find the value of unknowns a_{n}, \ldots, a_{0} ?
- Several methods:
- Solving linear system, Lagrange's, Newton's method, ...

Problem of Higher-Degree Polynomial Interpolation

- Oscillations at the ends - Runge's Phenomenon

- Using higher-degree polynomial interpolation for curves is a bad idea.

[Demo] Polynomial Interpolation

Interpolation Polynomial
Click and drag the control points and the polynomial curve will interpolate to satisfy them
Polynomial Degree:[2 (parabola)

https://www.benjoffe.com/code/demos/interpolate

- Drag points and observe changes of the curve.
- Increase polynomial degree and drag points.

Cubic Polynomials

- Cubic (degree of 3) polynomials are commonly used in computer

$$
y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}
$$ graphics because...

$$
x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x}
$$

$$
z(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z}
$$

or

- The lowest-degree polynomials representing a 3D curve.
- Can avoid unwanted wiggles of higher-degree polynomials (Runge's Phenomenon)

$$
\mathbf{p}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
$$

Complex Curve from Cubic Polynomials?

- How to make

- using

- Answer \rightarrow Spline: piecewise polynomial
- At this moment, let's just focus on a single piece of polynomial.

Defining a Single Piece of Cubic Polynomial

$$
\mathbf{p}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
$$

- Goal: Defining a specific curve (finding $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$) as we want (using data points or conditions given by you)
- 4 unknowns, so we need 4 equations (conditions or constraints). For example,
- 4 data points

- position and derivative of two end points

Formulation of a Single Piece of Polynomial

- A polynomial can be formulated in two ways:
- With coefficients and variable:

$$
\mathbf{p}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d}
$$

- coefficients: $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$
- variable: t
- With basis functions and points:

$$
\mathbf{p}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
$$

- basis functions: $\mathrm{b}_{0}(\mathrm{t}), \mathrm{b}_{1}(\mathrm{t}), \mathrm{b}_{2}(\mathrm{t}), \mathrm{b}_{3}(\mathrm{t})$
- points: $\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$

Trivial Example: Linear Polynomial

Trivial Example: Linear Polynomial

- Formulation with coefficients and variable:

$$
\begin{aligned}
x(t) & =\left(x_{1}-x_{0}\right) t+x_{0} \\
y(t) & =\left(y_{1}-y_{0}\right) t+y_{0} \\
\mathbf{p}(t) & =\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0}
\end{aligned}
$$

- Matrix formulation

$$
\mathbf{p}(t)=\left[\begin{array}{ll}
t & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1}
\end{array}\right]
$$

$$
\boldsymbol{p}(t)=\left[\begin{array}{ll}
x(t) & y(t)
\end{array}\right]
$$

Trivial Example: Linear Polynomial

- Formulation with basis functions and points:
- regroup expression by \mathbf{p} rather than t

$$
\begin{aligned}
\mathbf{p}(t) & =\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) t+\mathbf{p}_{0} \\
& =\underbrace{(1-t)}_{\text {basis functions }} \mathbf{p}_{0}+t \mathbf{p}_{1}
\end{aligned}
$$

- interpretation in matrix viewpoint

$$
\mathbf{p}(t)=\left(\left[\begin{array}{ll}
t & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0
\end{array}\right]\right)\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1}
\end{array}\right]
$$

Meaning of Basis Functions

$$
\mathbf{p}(t)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}
$$

- Contribution of each point as t changes

Quiz 1

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Hermite Curve

Hermite Curve

- A Hermite curve is a cubic polynomial defined in Hermite form.
- In splines, we want curve pieces that connect smoothly.
- In Hermite spline, you can do this by specifying
- position of the endpoints
- 1st derivatives at the endpoints

Hermite Curve

- A cubic polynomial.

- Constraints: endpoints and their tangents (derivatives)

Hermite curve

- Solve constraints to find coefficients

$$
\begin{aligned}
x(t) & =a t^{3}+b t^{2}+c t+d \\
x^{\prime}(t) & =3 a t^{2}+2 b t+c \\
x(0) & =x_{0}=d \\
x(1) & =x_{1}=a+b+c+d \\
x^{\prime}(0) & =x_{0}^{\prime}=c \\
x^{\prime}(1) & =x_{1}^{\prime}=3 a+2 b+c
\end{aligned}
$$

$$
d=x_{0}
$$

Hermite curve

- Solve constraints to find coefficients

$$
\begin{aligned}
x(t) & =a t^{3}+b t^{2}+c t+d \\
x^{\prime}(t) & =3 a t^{2}+2 b t+c \\
x(0) & =x_{0}=d \\
x(1) & =x_{1}=a+b+c+d \\
x^{\prime}(0) & =x_{0}^{\prime}=c \\
x^{\prime}(1) & =x_{1}^{\prime}=3 a+2 b+c
\end{aligned}
$$

Hermite curve

- Matrix form is much simpler

$$
\begin{aligned}
& \mathbf{p}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right] \\
& \text { - coefficients = rows } \\
& \text { Hermite basis matrix }
\end{aligned}\left[\begin{array}{l}
p_{0} \\
p_{1} \\
v_{0} \\
v_{1}
\end{array}\right]=\left[\begin{array}{ll}
x_{0} & y_{0} \\
x_{1} & y_{1} \\
x_{1}^{\prime} & y_{0}^{\prime} \\
x_{1}^{\prime} & y_{1}^{\prime}
\end{array}\right] .
$$

Coefficients = rows

$$
\begin{gathered}
\mathbf{p}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
{\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
\mathbf{p}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
\end{gathered}
$$

Basis functions = columns

$$
\begin{gathered}
\mathbf{p}(t)=\mathbf{a} t^{3}+\mathbf{b} t^{2}+\mathbf{c} t+\mathbf{d} \\
{\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]} \\
\mathbf{p}(t)=b_{0}(t) \mathbf{p}_{0}+b_{1}(t) \mathbf{p}_{1}+b_{2}(t) \mathbf{p}_{2}+b_{3}(t) \mathbf{p}_{3}
\end{gathered}
$$

Hermite curve

- Hermite basis functions

[Demo] Hermite Curve

https://codepen.io/liorda/pen/KrvBwr

- Change the position of end points and their derivatives by dragging

Quiz 2

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Bezier Curve

Bezier Curve

- A Bezier curve is a polynomial defined in Bezier form.
- We'll see a cubic Bezier curve example in the following slides.
- But note that Bezier curves are not limited to using a third-degree polynomial.
- In Bezier spline, you can connect curve pieces smoothly by carefully specifying control points.

Recall: Hermite curve

- Constraints: endpoints and tangents (derivatives)

$$
\begin{aligned}
& \mathbf{p}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]_{\text {© 2008 Steve Marschner } \bullet_{3}} \text { and } 2008 \text { • Lecture } 18
\end{aligned}
$$

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

Hermite to Bézier

- Mixture of points and vectors is awkward
- Specify tangents as differences of points

$$
\begin{aligned}
& q_{0}, q_{1}, q_{2}, q_{3} \\
& : \text { control points }
\end{aligned}
$$

- note derivative is defined as 3 times offset t

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{v}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{v}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{v}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{v}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{v}_{0} \\
\mathbf{v}_{1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Hermite to Bézier

$$
\begin{aligned}
\mathbf{p}_{0} & =\mathbf{q}_{0} \\
\mathbf{p}_{1} & =\mathbf{q}_{3} \\
\mathbf{v}_{0} & =3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\mathbf{v}_{1} & =3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right)
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]
$$

Hermite basis matrix

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=} & {\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right] \begin{array}{c}
\text { Hermite to Bézier } \\
\\
\\
\mathbf{p}_{0}=\mathbf{q}_{0} \\
\mathbf{p}_{1}=\mathbf{q}_{3} \\
\\
\mathbf{v}_{0}=3\left(\mathbf{q}_{1}-\mathbf{q}_{0}\right) \\
\\
\mathbf{v}_{1}=3\left(\mathbf{q}_{3}-\mathbf{q}_{2}\right) \\
\\
\\
{\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b} \\
\mathbf{c} \\
\mathbf{d}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -2 & 1 & 1 \\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-3 & 3 & 0 & 0 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
\mathbf{q}_{0} \\
\mathbf{q}_{1} \\
\mathbf{q}_{2} \\
\mathbf{q}_{3}
\end{array}\right]}
\end{array} . \begin{array}{l}
\mathbf{q}_{0} \mathbf{q}_{0} \\
\mathbf{q}_{0}
\end{array} }
\end{aligned}
$$

Bézier matrix

$$
\mathbf{p}(t)=\left[\begin{array}{llll}
t^{3} & t^{2} & t & 1
\end{array}\right]\left[\begin{array}{cccc}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{0} \\
\mathbf{p}_{1} \\
\mathbf{p}_{2} \\
\mathbf{p}_{3}
\end{array}\right]
$$

- note that these are the Bernstein polynomials

$$
b_{n, k}(t)=\binom{n}{k} t^{k}(1-t)^{n-k}
$$

and that defines Bézier curves for any degree (n : degrees of polynomial, k : index of basis function)

Bezier Curve

- Bernstein basis functions

$$
B_{i}^{n}(t)=\binom{n}{i}(1-t)^{n-i} t^{i}
$$

$$
\begin{aligned}
& B_{0}^{3}(t)=(1-t)^{3} \\
& B_{1}^{3}(t)=3 t(1-t)^{2} \\
& B_{2}^{3}(t)=3 t^{2}(1-t)^{1} \\
& B_{3}^{3}(t)=t^{3}
\end{aligned}
$$

- Cubic Bezier curve: Cubic polynomial in Bernstein bases

$$
\begin{aligned}
\mathbf{p}(t) & =B_{0}^{3}(t) \mathbf{p}_{0}+B_{1}^{3}(t) \mathbf{p}_{1}+B_{2}^{3}(t) \mathbf{p}_{2}+B_{3}^{3}(t) \mathbf{p}_{3} \\
& =(1-t)^{3} \mathbf{p}_{0}+3 t(1-t)^{2} \mathbf{p}_{1}+3 t^{2}(1-t) \mathbf{p}_{2}+t^{3} \mathbf{p}_{3}
\end{aligned}
$$

Bézier basis

de Casteljau's Algorithm

Paul de Casteljau (1930-) first developed the 'Bezier' curve using this algorithm in 1959 while working at Citroën, but was not able to publish them due to company policy

- Another method to compute Bezier curve

de Casteljau Algorithm

- We start with our original set of points
- In the case of a cubic Bezier curve, we start with four points

\mathbf{p}_{3}

de Casteljau Algorithm

$$
\begin{aligned}
& \mathbf{q}_{0}=\operatorname{Lerp}\left(t, \mathbf{p}_{0}, \mathbf{p}_{1}\right) \\
& \mathbf{q}_{1}=\operatorname{Lerp}\left(t, \mathbf{p}_{1}, \mathbf{p}_{2}\right) \\
& \mathbf{q}_{2}=\operatorname{Lerp}\left(t, \mathbf{p}_{2}, \mathbf{p}_{3}\right)
\end{aligned}
$$

\mathbf{p}_{3}

de Casteljau Algorithm

$$
\begin{aligned}
& \mathbf{r}_{0}=\operatorname{Lerp}\left(t, \mathbf{q}_{0}, \mathbf{q}_{1}\right) \\
& \mathbf{r}_{1}=\operatorname{Lerp}\left(t, \mathbf{q}_{1}, \mathbf{q}_{2}\right)
\end{aligned}
$$

de Casteljau Algorithm

de Casteljau's Algorithm

de Casteljau's Algorithm

- Nice recursive algorithm to compute a point on a Bezier curve
- Additionally, it subdivide a Bezier curve into two segments

- You can draw a curve with a sufficient number of subdivided control points
- "Subdivision" method for displaying curves

[Demo] de Casteljau's Algorithm

http://www.malinc.se/m/DeCasteljauAndBezier.php

- Move red points
- Also check the subdivision demo

Displaying Curves

- To display a curve, compute a set of points on a curve and connecting the points with line segments.
- Brute-force
- Evaluate $\mathbf{p}(\mathrm{t})$ for incrementally spaced values of t
- Finite difference
- The same idea, but much more efficient
- See http://www.drdobbs.com/forward-difference-calculation-ofbezier/184403417
- Subdivision
- Use de Casteljau's algorithm

Properties of Bezier Curve

- Intuitively controlled by control points
- The curve is contained in the convex hull of control points.

- End point interpolation.

Quiz 3

- Go to https://www.slido.com/
- Join \#cg-ys
- Click "Polls"
- Submit your answer in the following format:
- Student ID: Your answer
- e.g. 2021123456: 4.0
- Note that your quiz answer must be submitted in the above format to receive a quiz score!

Brief Intro to Spline

Spline

- Spline: piecewise polynomial

- Three issues:
- How to connect these pieces continuously?
- How easy is it to "control" the shape of a spline?
- Does a spline have to pass through specific points?

Continuity

- Let's try another Bezier demo: Bezier spline

- How to "smooth" the spline?

Continuity

- Smoothness can be described by degree of continuity
- zero-order (C^{0}): position matches from both sides
- first-order $\left(C^{1}\right)$: position and $1^{\text {st }}$ derivative (velocity) match from both sides
- second-order (C^{2}): position and $1^{\text {st }} \& 2^{\text {nd }}$ derivatives (velocity \& acceleration) match from both sides

Control

- Let's say you want to make a specific shape using these two curves. Which one is more controllable?

Control

- Local control
- changing control point only affects a limited part of spline
- without this, splines are very difficult to use
- many likely formulations lack this
- natural spline
- polynomial fits

Interpolation / Approximation

- Interpolation: passes through points

- Approximation: guided by points

- Interpolation properties are preferable, but not mandatory.

Bezier Spline

- Continuity: can be C^{0} or C^{1}
- Local controllability
- C^{2} is possible with the loss of local controllability. Rarely used.
- Interpolation: only pass through two end points
- Bezier spline is very widely used:
- To draw shapes in graphic tools such as Adobe Illustrator
- To define animation paths in 3D authoring tools such as Blender and Maya
- TrueType fonts use quadratic Bezier spline, PostScript fonts use cubic Bezier spline

Catmull-Rom Spline

- One Hermite curve between two consecutive control points.
- Define end point derivatives using adjacent control points.

- C^{1} continuity, local controllability, interpolation

Natural Cubic Splines

- We want to achieve higher continuity (at least C^{2})
- $4 n$ unknowns
- n Bezier curve segments (4 control points per each segment)
- $4 n$ equations
- $2 n$ equations for end point interpolation
- ($n-1$) equations for tangential continuity
- ($n-1$) equations for second derivative continuity
- 2 equations: $x^{\prime \prime}\left(t_{0}\right)=x^{\prime \prime}\left(t_{n}\right)=0$

- C^{2} continuity, no local controllability, interpolation

B-splines (brief intro)

- Use 4 points, but approximate only middle two

- Draw curve with overlapping segments
- 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc

- C^{2} continuity, local controllability, approximation

Lab Session

- Now let's start the lab session.

