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Announcement for Next Week Lecture / Lab

• Lecture for next week (May 29) will be provided as a 

recorded lecture video that will be uploaded to the 

LMS, because it is a substitute holiday.

• No 'time for assignment' in the lab on May 29.

– Email your assignment source code and captured video to TA 

by Friday of that week (Jun 2).

– The assignment pdf is expected to be uploaded on May 29.

• If you have any questions about the lecture or lab, 

please post them on the LMS Q&A board.
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Outline

• Intro: Motivation and Curve Representation

• Polynomial Curve

– Polynomial Interpolation

– More Discussion on Polynomials

• Hermite Curve

• Bezier Curve

• Brief Intro to Spline



Intro: Motivation and Curve 

Representation
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Motivation: Why Do We Need Curve?

• Smoothness

– no discontinuity

• In many CG applications, we need smooth shape 

and smooth movement.
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Curve Representations

• Non-parametric

– Explicit : y = f(x)
• ex) y = x2 + 2x - 2

• Pros) Easy to generate points

• Cons) Cannot express vertical lines!

– Implicit : f(x, y) = 0
• ex) x2 + y2 – 22 = 0

• Pros) Easy to test if a point is inside or 
outside

• Cons) Inconvenient to generate points
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Curve Representations

• Parametric : (x, y) = (f(t), g(t))

– ex) (x, y) = (2 cos(t), 2 sin(t))

– Each point on a curve is expressed as a 

function of additional parameter t

– Pros) Easy to generate points

– The parameter t acts as a “local 

coordinate” for points on the curve

• For computer graphics, the parametric 

representation is the most suitable.



Polynomial Curve
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Polynomial Curve

• Polynomials are usually used to describe curves in 

computer graphics.

– Simple

– Efficient

– Easy to manipulate

• A polynomial of degree n:
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Polynomial Interpolation

• One way to make a smooth curve using 

polynomials is polynomial interpolation.

• Polynomial interpolation determines a specific 

smooth polynomial curve passing though given 

data points.



Polynomial Interpolation

• Linear interpolation with a polynomial of degree one

– Input: two nodes

– Output: Linear polynomial

01 atatx +=)(

If t0=0 and t1=1, then a0=x0 and a1=x1-x0

→ x(t) = (x1-x0)t + x0 = (1-t)x0 + tx1

How to find a0 and a1?

→
position of a point

parameter of a curve

We can compute the value of a0 & 
a1 because we have 2 equations 

(=2 data points) for 2 unknowns!

* These slides are based on the slides of  Prof. Jehee Lee (SNU): 

http://mrl.snu.ac.kr/courses/CourseGraphics/index_2017spring.h

tml



Polynomial Interpolation

• Quadratic interpolation with a polynomial of degree two

),( 00 xt

),( 11 xt

01

2

2)( atatatx ++=

















=
































=++

=++

=++

2

1

0

2

1

0

2

22

2

11

2

00

2021

2

22

1011

2

12

0001

2

02

1

1

1

x

x

x

a

a

a

tt

tt

tt

xatata

xatata

xatata

),( 22 xt

(we need 3 points to get the 
value of 3 unknowns)



Polynomial Interpolation

• Polynomial interpolation of degree n
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• How to find the value of unknowns an, ..., a0?

• Several methods:

– Solving linear system, Lagrange’s, Newton’s method, ...
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• Oscillations at the ends – Runge’s Phenomenon

• Using higher-degree polynomial interpolation for curves is 
a bad idea.

Problem of Higher-Degree Polynomial 

Interpolation
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[Demo] Polynomial Interpolation

https://www.benjoffe.com/code/demos/interpolate

• Drag points and observe changes of the curve.

• Increase polynomial degree and drag points.

https://www.benjoffe.com/code/demos/interpolate
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Cubic Polynomials

• Cubic (degree of 3) polynomials 

are commonly used in computer 

graphics because...

• The lowest-degree polynomials 

representing a 3D curve.

• Can avoid unwanted wiggles of 

higher-degree polynomials 

(Runge’s Phenomenon)

dcbap +++=

+++=

+++=

+++=

tttt

dtctbtatz

dtctbtaty

dtctbtatx

zzzz

yyyy

xxxx

23

23

23

23

)(

or

)(

)(

)(



Hanyang University CSE4020, Yoonsang Lee

• How to make                                      ?

• using                     ? 

• Answer → Spline: piecewise polynomial

• At this moment, let’s just focus on a single piece of 
polynomial.

Complex Curve from Cubic Polynomials?
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Defining a Single Piece of Cubic Polynomial

• Goal: Defining a specific curve (finding a, b, c, d) as we want 
(using data points or conditions given by you)

• 4 unknowns, so we need 4 equations (conditions or 
constraints). For example,

– 4 data points

– position and derivative of two end points

– ...

dcbap +++= tttt 23)(



Hanyang University CSE4020, Yoonsang Lee

Formulation of a Single Piece of Polynomial

• A polynomial can be formulated in two ways:

• With coefficients and variable:

– coefficients: a, b, c, d

– variable: t

• With basis functions and points:

– basis functions: b0(t), b1(t), b2(t), b3(t)

– points: p0, p1, p2, p3



Hanyang University CSE4020, Yoonsang Lee

𝑥(𝑡) = 𝑎1𝑥𝑡 + 𝑎0𝑦
𝑦(𝑡) = 𝑎1𝑦𝑡 + 𝑎0𝑦

Trivial Example: Linear Polynomial

𝑡0, (𝑥0, 𝑦0)

𝑡1, (𝑥1, 𝑦1 )
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Trivial Example: Linear Polynomial

• Formulation with coefficients and variable:

• Matrix formulation

basis matrix
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Trivial Example: Linear Polynomial

• Formulation with basis functions and points:

– regroup expression by p rather than t

– interpretation in matrix viewpoint
basis functions
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Meaning of Basis Functions

• Contribution of each point as t changes

b0(t)=1-t
b1(t)=t
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Quiz 1

• Go to https://www.slido.com/

• Join #cg-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2021123456: 4.0

• Note that your quiz answer must be submitted in the 

above format to receive a quiz score!

https://www.slido.com/


Hermite Curve
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Hermite Curve

• A Hermite curve is a cubic polynomial 

defined in Hermite form.

• In splines, we want curve pieces that 

connect smoothly.

• In Hermite spline, you can do this by 

specifying

– position of the endpoints

– 1st derivatives at the endpoints
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Hermite Curve

• A cubic polynomial.

• Constraints: endpoints and their tangents 

(derivatives)

Charles Hermite
(1822-1901)
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Hermite curve

• Solve constraints to find coefficients
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Hermite curve

• Solve constraints

to find coefficients

calculate A-1
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Hermite curve

• Matrix form is much simpler

– coefficients = rows

– basis functions = columns

Hermite basis matrix
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Coefficients = rows
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Basis functions = columns
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Hermite curve

• Hermite basis functions
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[Demo] Hermite Curve

• Change the position of end points and their 

derivatives by dragging

https://codepen.io/liorda/pen/KrvBwr

https://codepen.io/liorda/pen/KrvBwr
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Quiz 2

• Go to https://www.slido.com/

• Join #cg-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2021123456: 4.0

• Note that your quiz answer must be submitted in the 

above format to receive a quiz score!

https://www.slido.com/


Bezier Curve
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Bezier Curve

• A Bezier curve is a polynomial defined 

in Bezier form.

– We'll see a cubic Bezier curve example in 

the following slides.

– But note that Bezier curves are not limited 

to using a third-degree polynomial.

• In Bezier spline, you can connect curve 

pieces smoothly by carefully specifying 

control points.
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Recall: Hermite curve

• Constraints: endpoints and tangents (derivatives)
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Hermite to Bézier

• Mixture of points and vectors is awkward

• Specify tangents as differences of points
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Hermite to Bézier

• Mixture of points and vectors is awkward

• Specify tangents as differences of points
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Hermite to Bézier

• Mixture of points and vectors is awkward

• Specify tangents as differences of points
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Hermite to Bézier

• Mixture of points and vectors is awkward

• Specify tangents as differences of points

– note derivative is defined as 3 times offset t

Pierre Bézier (1910-1999)
widely published 
research on this curve 
while working at Renault

q0, q1, q2, q3

: control points
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Hermite to Bézier
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Hermite to Bézier
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Hermite to Bézier

Hermite basis matrix

control points



© 2008 Steve Marschner • Cornell CS4620 Fall 2008 • Lecture 18 4

6

Hermite to Bézier
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Bézier matrix

– note that these are the Bernstein polynomials

C(n,k) tk (1 – t)n – k

and that defines Bézier curves for any degree
(n: degrees of polynomial, k: index of basis function)

use notation ‘p’ instead of ‘q’
Bezier basis matrix



Bezier Curve

• Bernstein basis functions

• Cubic Bezier curve: Cubic polynomial in 

Bernstein bases
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Bézier basis

b3,1(t)

b3,0(t)

b3,2(t)

b3,3(t)

p2
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de Casteljau’s Algorithm

• Another method to compute Bezier curve

Paul de Casteljau (1930-)
first developed the ‘Bezier’ 
curve using this algorithm 
in 1959 while working at 
Citroën, but was not able 
to publish them due to 
company policy
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t
1-t
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de Casteljau’s Algorithm

https://people.eecs.berkeley.edu/~sequin/CS284/LECT06/L3.htm

https://people.eecs.berkeley.edu/~sequin/CS284/LECT06/L3.htm
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de Casteljau’s Algorithm

• Nice recursive algorithm to compute a point on a Bezier curve

• Additionally, it subdivide a Bezier curve into two segments

• You can draw a curve with a sufficient number of subdivided 
control points

– "Subdivision" method for displaying curves

http://de.wikipedia.org/wiki/Bild:De_Casteljau_construction_2.png
http://de.wikipedia.org/wiki/Bild:De_Casteljau_construction_3.png


Hanyang University CSE4020, Yoonsang Lee

[Demo] de Casteljau’s Algorithm

• Move red points

• Also check the subdivision demo

http://www.malinc.se/m/DeCasteljauAndBezier.php

http://www.malinc.se/m/DeCasteljauAndBezier.php
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Displaying Curves

• To display a curve, compute a set of points on a curve and 
connecting the points with line segments.

• Brute-force

– Evaluate p(t) for incrementally spaced values of t 

• Finite difference

– The same idea, but much more efficient

– See http://www.drdobbs.com/forward-difference-calculation-of-
bezier/184403417

• Subdivision

– Use de Casteljau’s algorithm

http://www.drdobbs.com/forward-difference-calculation-of-bezier/184403417
http://www.drdobbs.com/forward-difference-calculation-of-bezier/184403417
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Properties of Bezier Curve

• Intuitively controlled by control points

• The curve is contained in the convex hull of control 

points.

• End point interpolation.

Convex hull: Minimal-sized convex 
polygon containing all points
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Quiz 3

• Go to https://www.slido.com/

• Join #cg-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2021123456: 4.0

• Note that your quiz answer must be submitted in the 

above format to receive a quiz score!

https://www.slido.com/


Brief Intro to Spline
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Spline

• Spline: piecewise polynomial

• Three issues:

– How to connect these pieces continuously?

– How easy is it to "control" the shape of a spline?

– Does a spline have to pass through specific points?
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Continuity

• Let’s try another Bezier demo: Bezier spline

• How to “smooth” the spline?

http://math.hws.edu/graphicsbo
ok/demos/c2/cubic-bezier.html

http://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html
http://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html
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Continuity

• Smoothness can be described by degree of continuity

– zero-order (C0): position matches from both sides

– first-order (C1): position and 1st derivative (velocity) match from 
both sides

– second-order (C2): position and 1st & 2nd derivatives (velocity & 
acceleration) match from both sides

zero order first order second order
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Control

• Let’s say you want to make a specific shape using 

these two curves. Which one is more controllable?

http://math.hws.edu/graphicsbo
ok/demos/c2/cubic-bezier.html

https://www.benjoffe.com/co
de/demos/interpolate

http://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html
http://math.hws.edu/graphicsbook/demos/c2/cubic-bezier.html
https://www.benjoffe.com/code/demos/interpolate
https://www.benjoffe.com/code/demos/interpolate
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Control

• Local control

– changing control point only affects a limited part of spline

– without this, splines are very difficult to use

– many likely formulations lack this

• natural spline

• polynomial fits
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Interpolation / Approximation

• Interpolation: passes through points

• Approximation: guided by points

• Interpolation properties are preferable, but not mandatory.
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Bezier Spline

• Continuity: can be C0 or C1

• Local controllability

– C2 is possible with the loss of local controllability. 
Rarely used.

• Interpolation: only pass through two end points

• Bezier spline is very widely used:

– To draw shapes in graphic tools such as Adobe 
Illustrator

– To define animation paths in 3D authoring tools such 
as Blender and Maya

– TrueType fonts use quadratic Bezier spline, 
PostScript fonts use cubic Bezier spline



Hanyang University CSE4020, Yoonsang Lee

Catmull-Rom Spline

• One Hermite curve between two consecutive 

control points.

• Define end point derivatives using adjacent control 

points.
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• C1 continuity, local controllability, interpolation



Natural Cubic Splines

• We want to achieve higher continuity (at least C2)

• 4n unknowns 

– n Bezier curve segments (4 control points per each segment)

• 4n equations

– 2n equations for end point interpolation

– (n-1) equations for tangential continuity

– (n-1) equations for second derivative continuity

– 2 equations: 

),( 00 xt

),( 11 xt

),( nn xt
),( 22 xt

),( 33 xt

),( 11 −− nn xt

00 == )()( ntxtx

• C2 continuity, no local controllability, interpolation
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B-splines  (brief intro)

• Use 4 points, but approximate only middle two

• Draw curve with overlapping segments

– 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc

• C2 continuity, local controllability, approximation
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Lab Session

• Now let's start the lab session.
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